A comparison between several correlated stochastic volatility models
نویسندگان
چکیده
We compare the most common SV models such as the Ornstein-Uhlenbeck (OU), the Heston and the exponential OU (expOU) models. We try to decide which is the most appropriate one by studying their volatility autocorrelation and leverage effect, and thus outline the limitations of each model. We add empirical research on market indices confirming the universality of the leverage and volatility correlations.
منابع مشابه
Simulating Exchange Rate Volatility in Iran Using Stochastic Differential Equations
The main purpose of this paper is to analyze the exchange rate volatility in Iran in the time period between 2011/11/27 and 2017/02/25 on a daily basis. As a tradable asset and as an important and effective economic variable, exchange rate plays a decisive role in the economy of a country. In a successful economic management, the modeling and prediction of the exchange rate volatility is esse...
متن کاملModeling Stock Return Volatility Using Symmetric and Asymmetric Nonlinear State Space Models: Case of Tehran Stock Market
Volatility is a measure of uncertainty that plays a central role in financial theory, risk management, and pricing authority. Turbulence is the conditional variance of changes in asset prices that is not directly observable and is considered a hidden variable that is indirectly calculated using some approximations. To do this, two general approaches are presented in the literature of financial ...
متن کاملActivity autocorrelation in financial markets A comparative study between several models
We study the activity, i.e., the number of transactions per unit time, of financial markets. Using the diffusion entropy technique we show that the autocorrelation of the activity is caused by the presence of peaks whose time distances are distributed following an asymptotic power law which ultimately recovers the Poissonian behavior. We discuss these results in comparison with ARCH models, sto...
متن کاملChapter on Bayesian Inference for Stochastic Volatility Modeling
This chapter reviews the major contributions over the last two decades to the literature on the Bayesian analysis of stochastic volatility (SV) models (univariate and multivariate). Bayesian inference is performed by tailoring Markov chain Monte Carlo (MCMC) or sequential Monte Carlo (SMC) schemes that take into account the specific modeling characteristics. The popular univariate stochastic vo...
متن کاملEstimating Correlated Jumps and Stochastic Volatilities
We formulate a bivariate stochastic volatility jump-diffusion model with correlated jumps and volatilities. An MCMC Metropolis-Hastings sampling algorithm is proposed to estimate the model’s parameters and latent state variables (jumps and stochastic volatilities) given observed returns. The methodology is successfully tested on several artificially generated bivariate time series and then on t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003